Package com.luciad.geometries.observable
Class ObservableCircleByCenterPointUtil
java.lang.Object
com.luciad.geometries.observable.ObservableCircleByCenterPointUtil
This class provides utility methods for
Observable instance for CircleByCenterPoint.-
Method Summary
Modifier and TypeMethodDescriptionstatic Observable<@Nullable Point> deriveCenter(Observable<@Nullable CircleByCenterPoint> observableCircle) Derives anObservablePointfrom the given observable circle that represents the center point.static Observable<@Nullable Point> derivePointAtAngle(Observable<@Nullable CircleByCenterPoint> observableCircle, Angle angle) Derives anObservablePointfrom the given observable circle that represents the point at the given angle.
-
Method Details
-
deriveCenter
@NotNull public static Observable<@Nullable Point> deriveCenter(@NotNull Observable<@Nullable CircleByCenterPoint> observableCircle) Derives anObservablePointfrom the given observable circle that represents the center point.This observable point will be updated when the given observable circle changes.
Notes:
- When the observable circle contains a
nullvalue, the observable center point instance will contain anullvalue too. Observable#setValuewill throw an exception for derived instances.
- Parameters:
observableCircle- an observable circle from which to derive the center- Returns:
- a derived
Observable
- When the observable circle contains a
-
derivePointAtAngle
@NotNull public static Observable<@Nullable Point> derivePointAtAngle(@NotNull Observable<@Nullable CircleByCenterPoint> observableCircle, @NotNull Angle angle) Derives anObservablePointfrom the given observable circle that represents the point at the given angle.This observable point will be updated when the given observable circle changes.
Notes:
- When the observable circle contains a
nullvalue, the observable point instance will contain anullvalue too. Observable#setValuewill throw an exception for derived instances.
- Parameters:
observableCircle- an observable circle from which to derive the pointangle- the angle at which to derive the point. For example: an angle of 0 will result in the point on the right of the major axis. An angle of 90 will result in the point a the top of the minor axis.- Returns:
- a derived
Observable
- When the observable circle contains a
-